1
Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.95 Safari/537.36
/rde/contents/library/ps2img/cgi-bin/eqn2gif.cgi
157.118.206.41
1620445344 2021/05/08 12:42:24
\left[ - \frac{F m_{1}^{5} m_{2}^{3} \sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}} \left(\begin{cases} - \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{2 k m_{1}^{8} + 16 k m_{1}^{7} m_{2} + 56 k m_{1}^{6} m_{2}^{2} + 112 k m_{1}^{5} m_{2}^{3} + 140 k m_{1}^{4} m_{2}^{4} + 112 k m_{1}^{3} m_{2}^{5} + 56 k m_{1}^{2} m_{2}^{6} + 16 k m_{1} m_{2}^{7} + 2 k m_{2}^{8}} + \frac{F m_{1}^{5} m_{2}^{3} \sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}} \left(\begin{cases} \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{2 k m_{1}^{8} + 16 k m_{1}^{7} m_{2} + 56 k m_{1}^{6} m_{2}^{2} + 112 k m_{1}^{5} m_{2}^{3} + 140 k m_{1}^{4} m_{2}^{4} + 112 k m_{1}^{3} m_{2}^{5} + 56 k m_{1}^{2} m_{2}^{6} + 16 k m_{1} m_{2}^{7} + 2 k m_{2}^{8}} + \frac{F m_{1}^{5} m_{2}^{2} \sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}} \left(\begin{cases} - \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{2 k m_{1}^{7} + 14 k m_{1}^{6} m_{2} + 42 k m_{1}^{5} m_{2}^{2} + 70 k m_{1}^{4} m_{2}^{3} + 70 k m_{1}^{3} m_{2}^{4} + 42 k m_{1}^{2} m_{2}^{5} + 14 k m_{1} m_{2}^{6} + 2 k m_{2}^{7}} - \frac{F m_{1}^{5} m_{2}^{2} \sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}} \left(\begin{cases} \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{2 k m_{1}^{7} + 14 k m_{1}^{6} m_{2} + 42 k m_{1}^{5} m_{2}^{2} + 70 k m_{1}^{4} m_{2}^{3} + 70 k m_{1}^{3} m_{2}^{4} + 42 k m_{1}^{2} m_{2}^{5} + 14 k m_{1} m_{2}^{6} + 2 k m_{2}^{7}} - \frac{5 F m_{1}^{4} m_{2}^{4} \sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}} \left(\begin{cases} - \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{2 k m_{1}^{8} + 16 k m_{1}^{7} m_{2} + 56 k m_{1}^{6} m_{2}^{2} + 112 k m_{1}^{5} m_{2}^{3} + 140 k m_{1}^{4} m_{2}^{4} + 112 k m_{1}^{3} m_{2}^{5} + 56 k m_{1}^{2} m_{2}^{6} + 16 k m_{1} m_{2}^{7} + 2 k m_{2}^{8}} + \frac{5 F m_{1}^{4} m_{2}^{4} \sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}} \left(\begin{cases} \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{2 k m_{1}^{8} + 16 k m_{1}^{7} m_{2} + 56 k m_{1}^{6} m_{2}^{2} + 112 k m_{1}^{5} m_{2}^{3} + 140 k m_{1}^{4} m_{2}^{4} + 112 k m_{1}^{3} m_{2}^{5} + 56 k m_{1}^{2} m_{2}^{6} + 16 k m_{1} m_{2}^{7} + 2 k m_{2}^{8}} + \frac{5 F m_{1}^{4} m_{2}^{3} \sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}} \left(\begin{cases} - \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{2 k m_{1}^{7} + 14 k m_{1}^{6} m_{2} + 42 k m_{1}^{5} m_{2}^{2} + 70 k m_{1}^{4} m_{2}^{3} + 70 k m_{1}^{3} m_{2}^{4} + 42 k m_{1}^{2} m_{2}^{5} + 14 k m_{1} m_{2}^{6} + 2 k m_{2}^{7}} - \frac{5 F m_{1}^{4} m_{2}^{3} \sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}} \left(\begin{cases} \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{2 k m_{1}^{7} + 14 k m_{1}^{6} m_{2} + 42 k m_{1}^{5} m_{2}^{2} + 70 k m_{1}^{4} m_{2}^{3} + 70 k m_{1}^{3} m_{2}^{4} + 42 k m_{1}^{2} m_{2}^{5} + 14 k m_{1} m_{2}^{6} + 2 k m_{2}^{7}} - \frac{F m_{1}^{4} m_{2}^{2} \sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}} \left(\begin{cases} - \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{2 k m_{1}^{6} + 12 k m_{1}^{5} m_{2} + 30 k m_{1}^{4} m_{2}^{2} + 40 k m_{1}^{3} m_{2}^{3} + 30 k m_{1}^{2} m_{2}^{4} + 12 k m_{1} m_{2}^{5} + 2 k m_{2}^{6}} + \frac{F m_{1}^{4} m_{2}^{2} \sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}} \left(\begin{cases} \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{2 k m_{1}^{6} + 12 k m_{1}^{5} m_{2} + 30 k m_{1}^{4} m_{2}^{2} + 40 k m_{1}^{3} m_{2}^{3} + 30 k m_{1}^{2} m_{2}^{4} + 12 k m_{1} m_{2}^{5} + 2 k m_{2}^{6}} - \frac{5 F m_{1}^{3} m_{2}^{5} \sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}} \left(\begin{cases} - \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{k m_{1}^{8} + 8 k m_{1}^{7} m_{2} + 28 k m_{1}^{6} m_{2}^{2} + 56 k m_{1}^{5} m_{2}^{3} + 70 k m_{1}^{4} m_{2}^{4} + 56 k m_{1}^{3} m_{2}^{5} + 28 k m_{1}^{2} m_{2}^{6} + 8 k m_{1} m_{2}^{7} + k m_{2}^{8}} + \frac{5 F m_{1}^{3} m_{2}^{5} \sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}} \left(\begin{cases} \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{k m_{1}^{8} + 8 k m_{1}^{7} m_{2} + 28 k m_{1}^{6} m_{2}^{2} + 56 k m_{1}^{5} m_{2}^{3} + 70 k m_{1}^{4} m_{2}^{4} + 56 k m_{1}^{3} m_{2}^{5} + 28 k m_{1}^{2} m_{2}^{6} + 8 k m_{1} m_{2}^{7} + k m_{2}^{8}} + \frac{5 F m_{1}^{3} m_{2}^{4} \sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}} \left(\begin{cases} - \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{k m_{1}^{7} + 7 k m_{1}^{6} m_{2} + 21 k m_{1}^{5} m_{2}^{2} + 35 k m_{1}^{4} m_{2}^{3} + 35 k m_{1}^{3} m_{2}^{4} + 21 k m_{1}^{2} m_{2}^{5} + 7 k m_{1} m_{2}^{6} + k m_{2}^{7}} - \frac{5 F m_{1}^{3} m_{2}^{4} \sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}} \left(\begin{cases} \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{k m_{1}^{7} + 7 k m_{1}^{6} m_{2} + 21 k m_{1}^{5} m_{2}^{2} + 35 k m_{1}^{4} m_{2}^{3} + 35 k m_{1}^{3} m_{2}^{4} + 21 k m_{1}^{2} m_{2}^{5} + 7 k m_{1} m_{2}^{6} + k m_{2}^{7}} - \frac{3 F m_{1}^{3} m_{2}^{3} \sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}} \left(\begin{cases} - \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{2 k m_{1}^{6} + 12 k m_{1}^{5} m_{2} + 30 k m_{1}^{4} m_{2}^{2} + 40 k m_{1}^{3} m_{2}^{3} + 30 k m_{1}^{2} m_{2}^{4} + 12 k m_{1} m_{2}^{5} + 2 k m_{2}^{6}} + \frac{3 F m_{1}^{3} m_{2}^{3} \sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}} \left(\begin{cases} \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{2 k m_{1}^{6} + 12 k m_{1}^{5} m_{2} + 30 k m_{1}^{4} m_{2}^{2} + 40 k m_{1}^{3} m_{2}^{3} + 30 k m_{1}^{2} m_{2}^{4} + 12 k m_{1} m_{2}^{5} + 2 k m_{2}^{6}} - \frac{5 F m_{1}^{2} m_{2}^{6} \sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}} \left(\begin{cases} - \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{k m_{1}^{8} + 8 k m_{1}^{7} m_{2} + 28 k m_{1}^{6} m_{2}^{2} + 56 k m_{1}^{5} m_{2}^{3} + 70 k m_{1}^{4} m_{2}^{4} + 56 k m_{1}^{3} m_{2}^{5} + 28 k m_{1}^{2} m_{2}^{6} + 8 k m_{1} m_{2}^{7} + k m_{2}^{8}} + \frac{5 F m_{1}^{2} m_{2}^{6} \sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}} \left(\begin{cases} \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{k m_{1}^{8} + 8 k m_{1}^{7} m_{2} + 28 k m_{1}^{6} m_{2}^{2} + 56 k m_{1}^{5} m_{2}^{3} + 70 k m_{1}^{4} m_{2}^{4} + 56 k m_{1}^{3} m_{2}^{5} + 28 k m_{1}^{2} m_{2}^{6} + 8 k m_{1} m_{2}^{7} + k m_{2}^{8}} + \frac{5 F m_{1}^{2} m_{2}^{5} \sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}} \left(\begin{cases} - \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{k m_{1}^{7} + 7 k m_{1}^{6} m_{2} + 21 k m_{1}^{5} m_{2}^{2} + 35 k m_{1}^{4} m_{2}^{3} + 35 k m_{1}^{3} m_{2}^{4} + 21 k m_{1}^{2} m_{2}^{5} + 7 k m_{1} m_{2}^{6} + k m_{2}^{7}} - \frac{5 F m_{1}^{2} m_{2}^{5} \sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}} \left(\begin{cases} \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{k m_{1}^{7} + 7 k m_{1}^{6} m_{2} + 21 k m_{1}^{5} m_{2}^{2} + 35 k m_{1}^{4} m_{2}^{3} + 35 k m_{1}^{3} m_{2}^{4} + 21 k m_{1}^{2} m_{2}^{5} + 7 k m_{1} m_{2}^{6} + k m_{2}^{7}} - \frac{3 F m_{1}^{2} m_{2}^{4} \sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}} \left(\begin{cases} - \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{2 k m_{1}^{6} + 12 k m_{1}^{5} m_{2} + 30 k m_{1}^{4} m_{2}^{2} + 40 k m_{1}^{3} m_{2}^{3} + 30 k m_{1}^{2} m_{2}^{4} + 12 k m_{1} m_{2}^{5} + 2 k m_{2}^{6}} + \frac{3 F m_{1}^{2} m_{2}^{4} \sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}} \left(\begin{cases} \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{2 k m_{1}^{6} + 12 k m_{1}^{5} m_{2} + 30 k m_{1}^{4} m_{2}^{2} + 40 k m_{1}^{3} m_{2}^{3} + 30 k m_{1}^{2} m_{2}^{4} + 12 k m_{1} m_{2}^{5} + 2 k m_{2}^{6}} - \frac{5 F m_{1} m_{2}^{7} \sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}} \left(\begin{cases} - \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{2 k m_{1}^{8} + 16 k m_{1}^{7} m_{2} + 56 k m_{1}^{6} m_{2}^{2} + 112 k m_{1}^{5} m_{2}^{3} + 140 k m_{1}^{4} m_{2}^{4} + 112 k m_{1}^{3} m_{2}^{5} + 56 k m_{1}^{2} m_{2}^{6} + 16 k m_{1} m_{2}^{7} + 2 k m_{2}^{8}} + \frac{5 F m_{1} m_{2}^{7} \sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}} \left(\begin{cases} \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{2 k m_{1}^{8} + 16 k m_{1}^{7} m_{2} + 56 k m_{1}^{6} m_{2}^{2} + 112 k m_{1}^{5} m_{2}^{3} + 140 k m_{1}^{4} m_{2}^{4} + 112 k m_{1}^{3} m_{2}^{5} + 56 k m_{1}^{2} m_{2}^{6} + 16 k m_{1} m_{2}^{7} + 2 k m_{2}^{8}} + \frac{5 F m_{1} m_{2}^{6} \sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}} \left(\begin{cases} - \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{2 k m_{1}^{7} + 14 k m_{1}^{6} m_{2} + 42 k m_{1}^{5} m_{2}^{2} + 70 k m_{1}^{4} m_{2}^{3} + 70 k m_{1}^{3} m_{2}^{4} + 42 k m_{1}^{2} m_{2}^{5} + 14 k m_{1} m_{2}^{6} + 2 k m_{2}^{7}} - \frac{5 F m_{1} m_{2}^{6} \sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}} \left(\begin{cases} \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{2 k m_{1}^{7} + 14 k m_{1}^{6} m_{2} + 42 k m_{1}^{5} m_{2}^{2} + 70 k m_{1}^{4} m_{2}^{3} + 70 k m_{1}^{3} m_{2}^{4} + 42 k m_{1}^{2} m_{2}^{5} + 14 k m_{1} m_{2}^{6} + 2 k m_{2}^{7}} - \frac{F m_{1} m_{2}^{5} \sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}} \left(\begin{cases} - \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{2 k m_{1}^{6} + 12 k m_{1}^{5} m_{2} + 30 k m_{1}^{4} m_{2}^{2} + 40 k m_{1}^{3} m_{2}^{3} + 30 k m_{1}^{2} m_{2}^{4} + 12 k m_{1} m_{2}^{5} + 2 k m_{2}^{6}} + \frac{F m_{1} m_{2}^{5} \sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}} \left(\begin{cases} \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{2 k m_{1}^{6} + 12 k m_{1}^{5} m_{2} + 30 k m_{1}^{4} m_{2}^{2} + 40 k m_{1}^{3} m_{2}^{3} + 30 k m_{1}^{2} m_{2}^{4} + 12 k m_{1} m_{2}^{5} + 2 k m_{2}^{6}} - \frac{F m_{2}^{8} \sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}} \left(\begin{cases} - \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{2 k m_{1}^{8} + 16 k m_{1}^{7} m_{2} + 56 k m_{1}^{6} m_{2}^{2} + 112 k m_{1}^{5} m_{2}^{3} + 140 k m_{1}^{4} m_{2}^{4} + 112 k m_{1}^{3} m_{2}^{5} + 56 k m_{1}^{2} m_{2}^{6} + 16 k m_{1} m_{2}^{7} + 2 k m_{2}^{8}} + \frac{F m_{2}^{8} \sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}} \left(\begin{cases} \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{2 k m_{1}^{8} + 16 k m_{1}^{7} m_{2} + 56 k m_{1}^{6} m_{2}^{2} + 112 k m_{1}^{5} m_{2}^{3} + 140 k m_{1}^{4} m_{2}^{4} + 112 k m_{1}^{3} m_{2}^{5} + 56 k m_{1}^{2} m_{2}^{6} + 16 k m_{1} m_{2}^{7} + 2 k m_{2}^{8}} + \frac{F m_{2}^{7} \sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}} \left(\begin{cases} - \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{2 k m_{1}^{7} + 14 k m_{1}^{6} m_{2} + 42 k m_{1}^{5} m_{2}^{2} + 70 k m_{1}^{4} m_{2}^{3} + 70 k m_{1}^{3} m_{2}^{4} + 42 k m_{1}^{2} m_{2}^{5} + 14 k m_{1} m_{2}^{6} + 2 k m_{2}^{7}} - \frac{F m_{2}^{7} \sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}} \left(\begin{cases} \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{2 k m_{1}^{7} + 14 k m_{1}^{6} m_{2} + 42 k m_{1}^{5} m_{2}^{2} + 70 k m_{1}^{4} m_{2}^{3} + 70 k m_{1}^{3} m_{2}^{4} + 42 k m_{1}^{2} m_{2}^{5} + 14 k m_{1} m_{2}^{6} + 2 k m_{2}^{7}} + \frac{2 m_{2} x_{2 ini}}{2 m_{1} + 2 m_{2}}, \ \frac{F m_{1} m_{2}^{2} \left(\begin{cases} - \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{2 m_{1}^{4} + 8 m_{1}^{3} m_{2} + 12 m_{1}^{2} m_{2}^{2} + 8 m_{1} m_{2}^{3} + 2 m_{2}^{4}} + \frac{F m_{1} m_{2}^{2} \left(\begin{cases} \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{2 m_{1}^{4} + 8 m_{1}^{3} m_{2} + 12 m_{1}^{2} m_{2}^{2} + 8 m_{1} m_{2}^{3} + 2 m_{2}^{4}} + \frac{F m_{2}^{4} \left(\begin{cases} - \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{2 m_{1}^{5} + 8 m_{1}^{4} m_{2} + 12 m_{1}^{3} m_{2}^{2} + 8 m_{1}^{2} m_{2}^{3} + 2 m_{1} m_{2}^{4}} + \frac{F m_{2}^{4} \left(\begin{cases} \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{2 m_{1}^{5} + 8 m_{1}^{4} m_{2} + 12 m_{1}^{3} m_{2}^{2} + 8 m_{1}^{2} m_{2}^{3} + 2 m_{1} m_{2}^{4}} + \frac{F m_{2}^{3} \left(\begin{cases} - \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{m_{1}^{4} + 4 m_{1}^{3} m_{2} + 6 m_{1}^{2} m_{2}^{2} + 4 m_{1} m_{2}^{3} + m_{2}^{4}} + \frac{F m_{2}^{3} \left(\begin{cases} \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{m_{1}^{4} + 4 m_{1}^{3} m_{2} + 6 m_{1}^{2} m_{2}^{2} + 4 m_{1} m_{2}^{3} + m_{2}^{4}} - \frac{F m_{2}^{3} \left(\begin{cases} - \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{2 m_{1}^{4} + 6 m_{1}^{3} m_{2} + 6 m_{1}^{2} m_{2}^{2} + 2 m_{1} m_{2}^{3}} - \frac{F m_{2}^{3} \left(\begin{cases} \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{2 m_{1}^{4} + 6 m_{1}^{3} m_{2} + 6 m_{1}^{2} m_{2}^{2} + 2 m_{1} m_{2}^{3}} - \frac{F m_{2}^{2} \left(\begin{cases} - \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{2 m_{1}^{3} + 6 m_{1}^{2} m_{2} + 6 m_{1} m_{2}^{2} + 2 m_{2}^{3}} - \frac{F m_{2}^{2} \left(\begin{cases} \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{2 m_{1}^{3} + 6 m_{1}^{2} m_{2} + 6 m_{1} m_{2}^{2} + 2 m_{2}^{3}} + \frac{m_{1} v_{1 ini} + m_{2} v_{2 ini}}{m_{1} + m_{2}}, \ \frac{F m_{1}^{5} m_{2} \left(\begin{cases} - \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{4 m_{1}^{7} + 28 m_{1}^{6} m_{2} + 84 m_{1}^{5} m_{2}^{2} + 140 m_{1}^{4} m_{2}^{3} + 140 m_{1}^{3} m_{2}^{4} + 84 m_{1}^{2} m_{2}^{5} + 28 m_{1} m_{2}^{6} + 4 m_{2}^{7}} - \frac{F m_{1}^{5} m_{2} \left(\begin{cases} \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{4 m_{1}^{7} + 28 m_{1}^{6} m_{2} + 84 m_{1}^{5} m_{2}^{2} + 140 m_{1}^{4} m_{2}^{3} + 140 m_{1}^{3} m_{2}^{4} + 84 m_{1}^{2} m_{2}^{5} + 28 m_{1} m_{2}^{6} + 4 m_{2}^{7}} - \frac{F m_{1}^{5} m_{2} \left(\begin{cases} - \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{2 m_{1}^{7} + 14 m_{1}^{6} m_{2} + 42 m_{1}^{5} m_{2}^{2} + 70 m_{1}^{4} m_{2}^{3} + 70 m_{1}^{3} m_{2}^{4} + 42 m_{1}^{2} m_{2}^{5} + 14 m_{1} m_{2}^{6} + 2 m_{2}^{7}} + \frac{F m_{1}^{5} m_{2} \left(\begin{cases} \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{2 m_{1}^{7} + 14 m_{1}^{6} m_{2} + 42 m_{1}^{5} m_{2}^{2} + 70 m_{1}^{4} m_{2}^{3} + 70 m_{1}^{3} m_{2}^{4} + 42 m_{1}^{2} m_{2}^{5} + 14 m_{1} m_{2}^{6} + 2 m_{2}^{7}} + \frac{5 F m_{1}^{4} m_{2}^{2} \left(\begin{cases} - \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{4 m_{1}^{7} + 28 m_{1}^{6} m_{2} + 84 m_{1}^{5} m_{2}^{2} + 140 m_{1}^{4} m_{2}^{3} + 140 m_{1}^{3} m_{2}^{4} + 84 m_{1}^{2} m_{2}^{5} + 28 m_{1} m_{2}^{6} + 4 m_{2}^{7}} - \frac{5 F m_{1}^{4} m_{2}^{2} \left(\begin{cases} \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{4 m_{1}^{7} + 28 m_{1}^{6} m_{2} + 84 m_{1}^{5} m_{2}^{2} + 140 m_{1}^{4} m_{2}^{3} + 140 m_{1}^{3} m_{2}^{4} + 84 m_{1}^{2} m_{2}^{5} + 28 m_{1} m_{2}^{6} + 4 m_{2}^{7}} - \frac{5 F m_{1}^{4} m_{2}^{2} \left(\begin{cases} - \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{2 m_{1}^{7} + 14 m_{1}^{6} m_{2} + 42 m_{1}^{5} m_{2}^{2} + 70 m_{1}^{4} m_{2}^{3} + 70 m_{1}^{3} m_{2}^{4} + 42 m_{1}^{2} m_{2}^{5} + 14 m_{1} m_{2}^{6} + 2 m_{2}^{7}} + \frac{5 F m_{1}^{4} m_{2}^{2} \left(\begin{cases} \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{2 m_{1}^{7} + 14 m_{1}^{6} m_{2} + 42 m_{1}^{5} m_{2}^{2} + 70 m_{1}^{4} m_{2}^{3} + 70 m_{1}^{3} m_{2}^{4} + 42 m_{1}^{2} m_{2}^{5} + 14 m_{1} m_{2}^{6} + 2 m_{2}^{7}} + \frac{F m_{1}^{4} \left(\begin{cases} - \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{4 m_{1}^{5} + 20 m_{1}^{4} m_{2} + 40 m_{1}^{3} m_{2}^{2} + 40 m_{1}^{2} m_{2}^{3} + 20 m_{1} m_{2}^{4} + 4 m_{2}^{5}} - \frac{F m_{1}^{4} \left(\begin{cases} \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{4 m_{1}^{5} + 20 m_{1}^{4} m_{2} + 40 m_{1}^{3} m_{2}^{2} + 40 m_{1}^{2} m_{2}^{3} + 20 m_{1} m_{2}^{4} + 4 m_{2}^{5}} - \frac{F m_{1}^{4} \left(\begin{cases} - \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{2 m_{1}^{5} + 10 m_{1}^{4} m_{2} + 20 m_{1}^{3} m_{2}^{2} + 20 m_{1}^{2} m_{2}^{3} + 10 m_{1} m_{2}^{4} + 2 m_{2}^{5}} + \frac{F m_{1}^{4} \left(\begin{cases} \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{2 m_{1}^{5} + 10 m_{1}^{4} m_{2} + 20 m_{1}^{3} m_{2}^{2} + 20 m_{1}^{2} m_{2}^{3} + 10 m_{1} m_{2}^{4} + 2 m_{2}^{5}} + \frac{5 F m_{1}^{3} m_{2}^{3} \left(\begin{cases} - \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{2 m_{1}^{7} + 14 m_{1}^{6} m_{2} + 42 m_{1}^{5} m_{2}^{2} + 70 m_{1}^{4} m_{2}^{3} + 70 m_{1}^{3} m_{2}^{4} + 42 m_{1}^{2} m_{2}^{5} + 14 m_{1} m_{2}^{6} + 2 m_{2}^{7}} - \frac{5 F m_{1}^{3} m_{2}^{3} \left(\begin{cases} \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{2 m_{1}^{7} + 14 m_{1}^{6} m_{2} + 42 m_{1}^{5} m_{2}^{2} + 70 m_{1}^{4} m_{2}^{3} + 70 m_{1}^{3} m_{2}^{4} + 42 m_{1}^{2} m_{2}^{5} + 14 m_{1} m_{2}^{6} + 2 m_{2}^{7}} - \frac{5 F m_{1}^{3} m_{2}^{3} \left(\begin{cases} - \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{m_{1}^{7} + 7 m_{1}^{6} m_{2} + 21 m_{1}^{5} m_{2}^{2} + 35 m_{1}^{4} m_{2}^{3} + 35 m_{1}^{3} m_{2}^{4} + 21 m_{1}^{2} m_{2}^{5} + 7 m_{1} m_{2}^{6} + m_{2}^{7}} + \frac{5 F m_{1}^{3} m_{2}^{3} \left(\begin{cases} \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{m_{1}^{7} + 7 m_{1}^{6} m_{2} + 21 m_{1}^{5} m_{2}^{2} + 35 m_{1}^{4} m_{2}^{3} + 35 m_{1}^{3} m_{2}^{4} + 21 m_{1}^{2} m_{2}^{5} + 7 m_{1} m_{2}^{6} + m_{2}^{7}} + \frac{3 F m_{1}^{3} m_{2} \left(\begin{cases} - \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{4 m_{1}^{5} + 20 m_{1}^{4} m_{2} + 40 m_{1}^{3} m_{2}^{2} + 40 m_{1}^{2} m_{2}^{3} + 20 m_{1} m_{2}^{4} + 4 m_{2}^{5}} - \frac{3 F m_{1}^{3} m_{2} \left(\begin{cases} \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{4 m_{1}^{5} + 20 m_{1}^{4} m_{2} + 40 m_{1}^{3} m_{2}^{2} + 40 m_{1}^{2} m_{2}^{3} + 20 m_{1} m_{2}^{4} + 4 m_{2}^{5}} - \frac{3 F m_{1}^{3} m_{2} \left(\begin{cases} - \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{2 m_{1}^{5} + 10 m_{1}^{4} m_{2} + 20 m_{1}^{3} m_{2}^{2} + 20 m_{1}^{2} m_{2}^{3} + 10 m_{1} m_{2}^{4} + 2 m_{2}^{5}} + \frac{3 F m_{1}^{3} m_{2} \left(\begin{cases} \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{2 m_{1}^{5} + 10 m_{1}^{4} m_{2} + 20 m_{1}^{3} m_{2}^{2} + 20 m_{1}^{2} m_{2}^{3} + 10 m_{1} m_{2}^{4} + 2 m_{2}^{5}} + \frac{5 F m_{1}^{2} m_{2}^{4} \left(\begin{cases} - \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{2 m_{1}^{7} + 14 m_{1}^{6} m_{2} + 42 m_{1}^{5} m_{2}^{2} + 70 m_{1}^{4} m_{2}^{3} + 70 m_{1}^{3} m_{2}^{4} + 42 m_{1}^{2} m_{2}^{5} + 14 m_{1} m_{2}^{6} + 2 m_{2}^{7}} - \frac{5 F m_{1}^{2} m_{2}^{4} \left(\begin{cases} \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{2 m_{1}^{7} + 14 m_{1}^{6} m_{2} + 42 m_{1}^{5} m_{2}^{2} + 70 m_{1}^{4} m_{2}^{3} + 70 m_{1}^{3} m_{2}^{4} + 42 m_{1}^{2} m_{2}^{5} + 14 m_{1} m_{2}^{6} + 2 m_{2}^{7}} - \frac{5 F m_{1}^{2} m_{2}^{4} \left(\begin{cases} - \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{m_{1}^{7} + 7 m_{1}^{6} m_{2} + 21 m_{1}^{5} m_{2}^{2} + 35 m_{1}^{4} m_{2}^{3} + 35 m_{1}^{3} m_{2}^{4} + 21 m_{1}^{2} m_{2}^{5} + 7 m_{1} m_{2}^{6} + m_{2}^{7}} + \frac{5 F m_{1}^{2} m_{2}^{4} \left(\begin{cases} \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{m_{1}^{7} + 7 m_{1}^{6} m_{2} + 21 m_{1}^{5} m_{2}^{2} + 35 m_{1}^{4} m_{2}^{3} + 35 m_{1}^{3} m_{2}^{4} + 21 m_{1}^{2} m_{2}^{5} + 7 m_{1} m_{2}^{6} + m_{2}^{7}} + \frac{3 F m_{1}^{2} m_{2}^{2} \left(\begin{cases} - \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{4 m_{1}^{5} + 20 m_{1}^{4} m_{2} + 40 m_{1}^{3} m_{2}^{2} + 40 m_{1}^{2} m_{2}^{3} + 20 m_{1} m_{2}^{4} + 4 m_{2}^{5}} - \frac{3 F m_{1}^{2} m_{2}^{2} \left(\begin{cases} \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{4 m_{1}^{5} + 20 m_{1}^{4} m_{2} + 40 m_{1}^{3} m_{2}^{2} + 40 m_{1}^{2} m_{2}^{3} + 20 m_{1} m_{2}^{4} + 4 m_{2}^{5}} - \frac{3 F m_{1}^{2} m_{2}^{2} \left(\begin{cases} - \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{2 m_{1}^{5} + 10 m_{1}^{4} m_{2} + 20 m_{1}^{3} m_{2}^{2} + 20 m_{1}^{2} m_{2}^{3} + 10 m_{1} m_{2}^{4} + 2 m_{2}^{5}} + \frac{3 F m_{1}^{2} m_{2}^{2} \left(\begin{cases} \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{2 m_{1}^{5} + 10 m_{1}^{4} m_{2} + 20 m_{1}^{3} m_{2}^{2} + 20 m_{1}^{2} m_{2}^{3} + 10 m_{1} m_{2}^{4} + 2 m_{2}^{5}} + \frac{F m_{1}^{2} m_{2} \left(\begin{cases} - \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{4 m_{1}^{4} + 16 m_{1}^{3} m_{2} + 24 m_{1}^{2} m_{2}^{2} + 16 m_{1} m_{2}^{3} + 4 m_{2}^{4}} + \frac{F m_{1}^{2} m_{2} \left(\begin{cases} \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{4 m_{1}^{4} + 16 m_{1}^{3} m_{2} + 24 m_{1}^{2} m_{2}^{2} + 16 m_{1} m_{2}^{3} + 4 m_{2}^{4}} + \frac{F m_{1}^{2} \left(\begin{cases} - \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{4 m_{1}^{3} + 12 m_{1}^{2} m_{2} + 12 m_{1} m_{2}^{2} + 4 m_{2}^{3}} + \frac{F m_{1}^{2} \left(\begin{cases} \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{4 m_{1}^{3} + 12 m_{1}^{2} m_{2} + 12 m_{1} m_{2}^{2} + 4 m_{2}^{3}} + \frac{5 F m_{1} m_{2}^{5} \left(\begin{cases} - \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{4 m_{1}^{7} + 28 m_{1}^{6} m_{2} + 84 m_{1}^{5} m_{2}^{2} + 140 m_{1}^{4} m_{2}^{3} + 140 m_{1}^{3} m_{2}^{4} + 84 m_{1}^{2} m_{2}^{5} + 28 m_{1} m_{2}^{6} + 4 m_{2}^{7}} - \frac{5 F m_{1} m_{2}^{5} \left(\begin{cases} \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{4 m_{1}^{7} + 28 m_{1}^{6} m_{2} + 84 m_{1}^{5} m_{2}^{2} + 140 m_{1}^{4} m_{2}^{3} + 140 m_{1}^{3} m_{2}^{4} + 84 m_{1}^{2} m_{2}^{5} + 28 m_{1} m_{2}^{6} + 4 m_{2}^{7}} - \frac{5 F m_{1} m_{2}^{5} \left(\begin{cases} - \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{2 m_{1}^{7} + 14 m_{1}^{6} m_{2} + 42 m_{1}^{5} m_{2}^{2} + 70 m_{1}^{4} m_{2}^{3} + 70 m_{1}^{3} m_{2}^{4} + 42 m_{1}^{2} m_{2}^{5} + 14 m_{1} m_{2}^{6} + 2 m_{2}^{7}} + \frac{5 F m_{1} m_{2}^{5} \left(\begin{cases} \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{2 m_{1}^{7} + 14 m_{1}^{6} m_{2} + 42 m_{1}^{5} m_{2}^{2} + 70 m_{1}^{4} m_{2}^{3} + 70 m_{1}^{3} m_{2}^{4} + 42 m_{1}^{2} m_{2}^{5} + 14 m_{1} m_{2}^{6} + 2 m_{2}^{7}} + \frac{F m_{1} m_{2}^{3} \left(\begin{cases} - \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{4 m_{1}^{5} + 20 m_{1}^{4} m_{2} + 40 m_{1}^{3} m_{2}^{2} + 40 m_{1}^{2} m_{2}^{3} + 20 m_{1} m_{2}^{4} + 4 m_{2}^{5}} - \frac{F m_{1} m_{2}^{3} \left(\begin{cases} \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{4 m_{1}^{5} + 20 m_{1}^{4} m_{2} + 40 m_{1}^{3} m_{2}^{2} + 40 m_{1}^{2} m_{2}^{3} + 20 m_{1} m_{2}^{4} + 4 m_{2}^{5}} - \frac{F m_{1} m_{2}^{3} \left(\begin{cases} - \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{2 m_{1}^{5} + 10 m_{1}^{4} m_{2} + 20 m_{1}^{3} m_{2}^{2} + 20 m_{1}^{2} m_{2}^{3} + 10 m_{1} m_{2}^{4} + 2 m_{2}^{5}} + \frac{F m_{1} m_{2}^{3} \left(\begin{cases} \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{2 m_{1}^{5} + 10 m_{1}^{4} m_{2} + 20 m_{1}^{3} m_{2}^{2} + 20 m_{1}^{2} m_{2}^{3} + 10 m_{1} m_{2}^{4} + 2 m_{2}^{5}} + \frac{F m_{1} m_{2}^{2} \left(\begin{cases} - \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{2 m_{1}^{4} + 8 m_{1}^{3} m_{2} + 12 m_{1}^{2} m_{2}^{2} + 8 m_{1} m_{2}^{3} + 2 m_{2}^{4}} + \frac{F m_{1} m_{2}^{2} \left(\begin{cases} \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{2 m_{1}^{4} + 8 m_{1}^{3} m_{2} + 12 m_{1}^{2} m_{2}^{2} + 8 m_{1} m_{2}^{3} + 2 m_{2}^{4}} + \frac{F m_{1} m_{2} \left(\begin{cases} - \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{4 m_{1}^{3} + 12 m_{1}^{2} m_{2} + 12 m_{1} m_{2}^{2} + 4 m_{2}^{3}} + \frac{F m_{1} m_{2} \left(\begin{cases} \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{4 m_{1}^{3} + 12 m_{1}^{2} m_{2} + 12 m_{1} m_{2}^{2} + 4 m_{2}^{3}} + \frac{F m_{2}^{6} \left(\begin{cases} - \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{4 m_{1}^{7} + 28 m_{1}^{6} m_{2} + 84 m_{1}^{5} m_{2}^{2} + 140 m_{1}^{4} m_{2}^{3} + 140 m_{1}^{3} m_{2}^{4} + 84 m_{1}^{2} m_{2}^{5} + 28 m_{1} m_{2}^{6} + 4 m_{2}^{7}} - \frac{F m_{2}^{6} \left(\begin{cases} \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{4 m_{1}^{7} + 28 m_{1}^{6} m_{2} + 84 m_{1}^{5} m_{2}^{2} + 140 m_{1}^{4} m_{2}^{3} + 140 m_{1}^{3} m_{2}^{4} + 84 m_{1}^{2} m_{2}^{5} + 28 m_{1} m_{2}^{6} + 4 m_{2}^{7}} - \frac{F m_{2}^{6} \left(\begin{cases} - \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{2 m_{1}^{7} + 14 m_{1}^{6} m_{2} + 42 m_{1}^{5} m_{2}^{2} + 70 m_{1}^{4} m_{2}^{3} + 70 m_{1}^{3} m_{2}^{4} + 42 m_{1}^{2} m_{2}^{5} + 14 m_{1} m_{2}^{6} + 2 m_{2}^{7}} + \frac{F m_{2}^{6} \left(\begin{cases} \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{2 m_{1}^{7} + 14 m_{1}^{6} m_{2} + 42 m_{1}^{5} m_{2}^{2} + 70 m_{1}^{4} m_{2}^{3} + 70 m_{1}^{3} m_{2}^{4} + 42 m_{1}^{2} m_{2}^{5} + 14 m_{1} m_{2}^{6} + 2 m_{2}^{7}} + \frac{F m_{2}^{3} \left(\begin{cases} - \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{4 m_{1}^{4} + 16 m_{1}^{3} m_{2} + 24 m_{1}^{2} m_{2}^{2} + 16 m_{1} m_{2}^{3} + 4 m_{2}^{4}} + \frac{F m_{2}^{3} \left(\begin{cases} \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{4 m_{1}^{4} + 16 m_{1}^{3} m_{2} + 24 m_{1}^{2} m_{2}^{2} + 16 m_{1} m_{2}^{3} + 4 m_{2}^{4}} + \frac{- k m_{1} x_{1 ini} + k m_{1} x_{2 ini} - k m_{2} x_{1 ini} + k m_{2} x_{2 ini} + m_{1} m_{2} v_{2 ini} \sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}}{2 m_{1} m_{2} \sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}} + 2 m_{2}^{2} \sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}}, \ \frac{F m_{1}^{5} m_{2} \left(\begin{cases} - \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{\left(4 m_{1}^{3} + 12 m_{1}^{2} m_{2} + 12 m_{1} m_{2}^{2} + 4 m_{2}^{3}\right) \left(m_{1}^{4} + 4 m_{1}^{3} m_{2} + 6 m_{1}^{2} m_{2}^{2} + 4 m_{1} m_{2}^{3} + m_{2}^{4}\right)} - \frac{F m_{1}^{5} m_{2} \left(\begin{cases} \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{\left(4 m_{1}^{3} + 12 m_{1}^{2} m_{2} + 12 m_{1} m_{2}^{2} + 4 m_{2}^{3}\right) \left(m_{1}^{4} + 4 m_{1}^{3} m_{2} + 6 m_{1}^{2} m_{2}^{2} + 4 m_{1} m_{2}^{3} + m_{2}^{4}\right)} + \frac{5 F m_{1}^{4} m_{2}^{2} \left(\begin{cases} - \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{\left(4 m_{1}^{3} + 12 m_{1}^{2} m_{2} + 12 m_{1} m_{2}^{2} + 4 m_{2}^{3}\right) \left(m_{1}^{4} + 4 m_{1}^{3} m_{2} + 6 m_{1}^{2} m_{2}^{2} + 4 m_{1} m_{2}^{3} + m_{2}^{4}\right)} - \frac{5 F m_{1}^{4} m_{2}^{2} \left(\begin{cases} \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{\left(4 m_{1}^{3} + 12 m_{1}^{2} m_{2} + 12 m_{1} m_{2}^{2} + 4 m_{2}^{3}\right) \left(m_{1}^{4} + 4 m_{1}^{3} m_{2} + 6 m_{1}^{2} m_{2}^{2} + 4 m_{1} m_{2}^{3} + m_{2}^{4}\right)} + \frac{F m_{1}^{4} \left(\begin{cases} - \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{\left(m_{1}^{2} + 2 m_{1} m_{2} + m_{2}^{2}\right) \left(4 m_{1}^{3} + 12 m_{1}^{2} m_{2} + 12 m_{1} m_{2}^{2} + 4 m_{2}^{3}\right)} - \frac{F m_{1}^{4} \left(\begin{cases} \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{\left(m_{1}^{2} + 2 m_{1} m_{2} + m_{2}^{2}\right) \left(4 m_{1}^{3} + 12 m_{1}^{2} m_{2} + 12 m_{1} m_{2}^{2} + 4 m_{2}^{3}\right)} + \frac{10 F m_{1}^{3} m_{2}^{3} \left(\begin{cases} - \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{\left(4 m_{1}^{3} + 12 m_{1}^{2} m_{2} + 12 m_{1} m_{2}^{2} + 4 m_{2}^{3}\right) \left(m_{1}^{4} + 4 m_{1}^{3} m_{2} + 6 m_{1}^{2} m_{2}^{2} + 4 m_{1} m_{2}^{3} + m_{2}^{4}\right)} - \frac{10 F m_{1}^{3} m_{2}^{3} \left(\begin{cases} \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{\left(4 m_{1}^{3} + 12 m_{1}^{2} m_{2} + 12 m_{1} m_{2}^{2} + 4 m_{2}^{3}\right) \left(m_{1}^{4} + 4 m_{1}^{3} m_{2} + 6 m_{1}^{2} m_{2}^{2} + 4 m_{1} m_{2}^{3} + m_{2}^{4}\right)} + \frac{3 F m_{1}^{3} m_{2} \left(\begin{cases} - \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{\left(m_{1}^{2} + 2 m_{1} m_{2} + m_{2}^{2}\right) \left(4 m_{1}^{3} + 12 m_{1}^{2} m_{2} + 12 m_{1} m_{2}^{2} + 4 m_{2}^{3}\right)} - \frac{3 F m_{1}^{3} m_{2} \left(\begin{cases} \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{\left(m_{1}^{2} + 2 m_{1} m_{2} + m_{2}^{2}\right) \left(4 m_{1}^{3} + 12 m_{1}^{2} m_{2} + 12 m_{1} m_{2}^{2} + 4 m_{2}^{3}\right)} + \frac{10 F m_{1}^{2} m_{2}^{4} \left(\begin{cases} - \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{\left(4 m_{1}^{3} + 12 m_{1}^{2} m_{2} + 12 m_{1} m_{2}^{2} + 4 m_{2}^{3}\right) \left(m_{1}^{4} + 4 m_{1}^{3} m_{2} + 6 m_{1}^{2} m_{2}^{2} + 4 m_{1} m_{2}^{3} + m_{2}^{4}\right)} - \frac{10 F m_{1}^{2} m_{2}^{4} \left(\begin{cases} \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{\left(4 m_{1}^{3} + 12 m_{1}^{2} m_{2} + 12 m_{1} m_{2}^{2} + 4 m_{2}^{3}\right) \left(m_{1}^{4} + 4 m_{1}^{3} m_{2} + 6 m_{1}^{2} m_{2}^{2} + 4 m_{1} m_{2}^{3} + m_{2}^{4}\right)} + \frac{3 F m_{1}^{2} m_{2}^{2} \left(\begin{cases} - \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{\left(m_{1}^{2} + 2 m_{1} m_{2} + m_{2}^{2}\right) \left(4 m_{1}^{3} + 12 m_{1}^{2} m_{2} + 12 m_{1} m_{2}^{2} + 4 m_{2}^{3}\right)} - \frac{3 F m_{1}^{2} m_{2}^{2} \left(\begin{cases} \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{\left(m_{1}^{2} + 2 m_{1} m_{2} + m_{2}^{2}\right) \left(4 m_{1}^{3} + 12 m_{1}^{2} m_{2} + 12 m_{1} m_{2}^{2} + 4 m_{2}^{3}\right)} + \frac{F m_{1}^{2} m_{2} \left(\begin{cases} - \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{\left(m_{1} + m_{2}\right) \left(4 m_{1}^{3} + 12 m_{1}^{2} m_{2} + 12 m_{1} m_{2}^{2} + 4 m_{2}^{3}\right)} + \frac{F m_{1}^{2} m_{2} \left(\begin{cases} \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{\left(m_{1} + m_{2}\right) \left(4 m_{1}^{3} + 12 m_{1}^{2} m_{2} + 12 m_{1} m_{2}^{2} + 4 m_{2}^{3}\right)} + \frac{F m_{1}^{2} \left(\begin{cases} - \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{4 m_{1}^{3} + 12 m_{1}^{2} m_{2} + 12 m_{1} m_{2}^{2} + 4 m_{2}^{3}} + \frac{F m_{1}^{2} \left(\begin{cases} \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{4 m_{1}^{3} + 12 m_{1}^{2} m_{2} + 12 m_{1} m_{2}^{2} + 4 m_{2}^{3}} + \frac{F m_{1} m_{2}^{6} \left(\begin{cases} - \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{\left(4 m_{1}^{3} + 12 m_{1}^{2} m_{2} + 12 m_{1} m_{2}^{2} + 4 m_{2}^{3}\right) \left(m_{1}^{5} + 4 m_{1}^{4} m_{2} + 6 m_{1}^{3} m_{2}^{2} + 4 m_{1}^{2} m_{2}^{3} + m_{1} m_{2}^{4}\right)} - \frac{F m_{1} m_{2}^{6} \left(\begin{cases} \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{\left(4 m_{1}^{3} + 12 m_{1}^{2} m_{2} + 12 m_{1} m_{2}^{2} + 4 m_{2}^{3}\right) \left(m_{1}^{5} + 4 m_{1}^{4} m_{2} + 6 m_{1}^{3} m_{2}^{2} + 4 m_{1}^{2} m_{2}^{3} + m_{1} m_{2}^{4}\right)} + \frac{5 F m_{1} m_{2}^{5} \left(\begin{cases} - \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{\left(4 m_{1}^{3} + 12 m_{1}^{2} m_{2} + 12 m_{1} m_{2}^{2} + 4 m_{2}^{3}\right) \left(m_{1}^{4} + 4 m_{1}^{3} m_{2} + 6 m_{1}^{2} m_{2}^{2} + 4 m_{1} m_{2}^{3} + m_{2}^{4}\right)} - \frac{5 F m_{1} m_{2}^{5} \left(\begin{cases} \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{\left(4 m_{1}^{3} + 12 m_{1}^{2} m_{2} + 12 m_{1} m_{2}^{2} + 4 m_{2}^{3}\right) \left(m_{1}^{4} + 4 m_{1}^{3} m_{2} + 6 m_{1}^{2} m_{2}^{2} + 4 m_{1} m_{2}^{3} + m_{2}^{4}\right)} + \frac{F m_{1} m_{2}^{3} \left(\begin{cases} - \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{\left(m_{1}^{2} + 2 m_{1} m_{2} + m_{2}^{2}\right) \left(4 m_{1}^{3} + 12 m_{1}^{2} m_{2} + 12 m_{1} m_{2}^{2} + 4 m_{2}^{3}\right)} - \frac{F m_{1} m_{2}^{3} \left(\begin{cases} \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{\left(m_{1}^{2} + 2 m_{1} m_{2} + m_{2}^{2}\right) \left(4 m_{1}^{3} + 12 m_{1}^{2} m_{2} + 12 m_{1} m_{2}^{2} + 4 m_{2}^{3}\right)} + \frac{F m_{1} m_{2}^{3} \left(\begin{cases} - \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{\left(m_{1}^{2} + m_{1} m_{2}\right) \left(4 m_{1}^{3} + 12 m_{1}^{2} m_{2} + 12 m_{1} m_{2}^{2} + 4 m_{2}^{3}\right)} + \frac{F m_{1} m_{2}^{3} \left(\begin{cases} \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{\left(m_{1}^{2} + m_{1} m_{2}\right) \left(4 m_{1}^{3} + 12 m_{1}^{2} m_{2} + 12 m_{1} m_{2}^{2} + 4 m_{2}^{3}\right)} + \frac{2 F m_{1} m_{2}^{2} \left(\begin{cases} - \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{\left(m_{1} + m_{2}\right) \left(4 m_{1}^{3} + 12 m_{1}^{2} m_{2} + 12 m_{1} m_{2}^{2} + 4 m_{2}^{3}\right)} + \frac{2 F m_{1} m_{2}^{2} \left(\begin{cases} \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{\left(m_{1} + m_{2}\right) \left(4 m_{1}^{3} + 12 m_{1}^{2} m_{2} + 12 m_{1} m_{2}^{2} + 4 m_{2}^{3}\right)} + \frac{F m_{1} m_{2} \left(\begin{cases} - \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{4 m_{1}^{3} + 12 m_{1}^{2} m_{2} + 12 m_{1} m_{2}^{2} + 4 m_{2}^{3}} + \frac{F m_{1} m_{2} \left(\begin{cases} \frac{1}{\sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}} & \text{for}\: \sqrt{- k \left(\frac{1}{m_{2}} + \frac{1}{m_{1}}\right)} \neq 0 \\0 & \text{otherwise} \end{cases}\right)}{4 m_{1}^{3} + 12 m_{1}^{2} m_{2} + 12 m_{1} m_{2}^{2} + 4 m_{2}^{3}} + \frac{2 k m_{1}^{3} x_{1 ini} - 2 k m_{1}^{3} x_{2 ini} + 6 k m_{1}^{2} m_{2} x_{1 ini} - 6 k m_{1}^{2} m_{2} x_{2 ini} + 6 k m_{1} m_{2}^{2} x_{1 ini} - 6 k m_{1} m_{2}^{2} x_{2 ini} + 2 k m_{2}^{3} x_{1 ini} - 2 k m_{2}^{3} x_{2 ini} - 2 m_{1}^{3} m_{2} v_{1 ini} \sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}} - 4 m_{1}^{2} m_{2}^{2} v_{1 ini} \sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}} - 2 m_{1} m_{2}^{3} v_{1 ini} \sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}}}{m_{2} \sqrt{- \frac{k}{m_{2}} - \frac{k}{m_{1}}} \left(4 m_{1}^{3} + 12 m_{1}^{2} m_{2} + 12 m_{1} m_{2}^{2} + 4 m_{2}^{3}\right)}\right]
3
[画像は表示できません]
変換
エラーがありました
使用できないTeXコマンドがありました
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
\begin{cases}
\text
\text
\end{cases}
! Missing } inserted.
<inserted text>
}
l.18 ...6} + 16 k m_{1} m_{2}^{7} + 2 k m_{2}^{8}}
+ \frac{F m_{1}^{5} m_{2}...
?
! Emergency stop.
<inserted text>
}
l.18 ...6} + 16 k m_{1} m_{2}^{7} + 2 k m_{2}^{8}}
+ \frac{F m_{1}^{5} m_{2}...
20210508_124202
http://www.mech.tohoku-gakuin.ac.jp/rde/contents/library/ps2img/eqn2gif_online.html
Sat May 8 12:42:24 2021