Development and Control of a Three DOF Spherical Induction Motor

Masaaki Kumagai
kumagai@tjcc.tohoku-gakuin.ac.jp
Tohoku-Gakuin University Sendai, Japan

Ralph L. Hollis
The Robotics Institute
Carnegie Mellon Pittsburgh, PA. U.S.
Outline

Backgrounds
 Motivation
 Previous efforts
Movie of the motor in operation
Hardware
Control
 Overall blockdiagram
 Torque distribution
Experimental results
Conclusions
Background of the work & Motivation

○ ballbot & BallIP

Complex ball drive mechanisms

- IMBD - Inverse Mouse Ball Drive
- BallIP
- Motor
- Roller
- Omnidirectional wheel
Background of the work & Motivation

○ ballbot & BallIP

Simpler mechanism → Spherical motor
Background of the work & Motivation

○ Requirements for the spherical motor

- DOF: 3 (two for travel, one for yaw-rotation)
- Non-limitation in rotational angle
- Speed: over 1m/s at surface
- Force/Torque: 50N(peak) at surface
- Good response (10ms is enough?)
- Linearity in torque
- Feedback for velocity, position

Equilibrium while leaning
Pioneers' works

O Spherical Induction Motors

- One-DOF spherical rotor (earliest?)
 Development and Design of Spherical Induction Motors
 by F.C. William et al. (1959)

- Two-DOF SIM
 Development of a Spherical Induction Motor With Two Degrees of Freedom
 by B.Dehez et al. (2006)

- Three-DOF SIM
 Proposal and Design of Multi-Degree-of Freedom Spherical Actuator
 by Tanaka et al. (2002, in Japanese)
Background of the work & Motivation

Nothing meets demand → develop by ourself

- DOF: 3 possible
- Non-limitation in rotational angle possible
- Speed: over 1m/s at surface possible
- Force/Torque: 50N at surface not enough
- Good response no data
- Linearity in torque no data
- Feedback for velocity, position nothing
Background of the work & Motivation

- Development of Ball Rotation Sensing using Optical Mouse Sensor (ICRA 11)
- Development of 3DOF Planar Induction motor (ICRA 12)
Background of the work & Motivation

- Our achievement

 - DOF: 3 → 3
 - Non-limitation in rotational angle → Yes
 - Speed: over 1m/s at surface → 1.1m/s
 - Force/Torque: 50N(peak) at surface → 40N
 - Good response → less than 10ms
 - Linearity in torque → Almost linear
 - Feedback for velocity, position → Yes
 - Used for ballbot? → Not yet
Developed Motor

- Video
Hardware of the SIM

Overview

- Rotor
- Spherical shell
- Stator
- Inductor
- Mouse sensor
- Frame
- Ball transfer
Hardware of the SIM

○ Spherical rotor (by Kitajima Shibori Mfg)

- Iron (steel) shell for magnetic circuit
- Copper shell for conductance

8.2kg
Hardware of the SIM

〇 Spherical rotor (inside)

Iron (steel) shell
welded into sphere

Copper shell
put on iron with adhesive

246.2mm

3.8mm
1.8mm
Hardware of the SIM

- Stator

- Inductors
- Ball transfers
- Supporting frame
Hardware of the SIM

O Stator components

Frame (A7075)

Inductor

25 turn Coil x9

Core: mag steel sheet x100
Hardware of the SIM

○ Vector controller for inductors

Two current cmd input,
Surface speed estimation
→ Three phase currents

magnetization: const

force cmd ∝
Hardware of the SIM

Mouse sensors

Four laser mouse sensors are used for:

- Angular velocity measurement → A.V. FB.
- Rotational position → Rotation feedback
- Surface speed → Vector controller
Control of the SIM

- Block diagram (SIM low-level)

- Estimation of angular vel.
- Frame rotation integrator
- Calculation of surface vel.
- Torque cmd distributor

Rotation
Angular vel.
Torque cmd
Control of the SIM

Block diagram (Feedback)

- Estimation of angular vel.
- Frame rotation integrator
- Calculation of surface vel.
- Torque cmd distribution

References:
- Rot. Ang. V.
- Rotation
- Angular vel.
- Torque cmd

PID

RDELab, Tohoku Gakuin Page. 19 Robot Development Engineering
Control of the SIM

- Torque command distribution

 - Each inductor outputs thrust on surface of the rotor, resulting rotational torque, proportional to individual command.

 - Summation of torques become total torque output.

 - How we can decide individual command for each inductor?
Control of the SIM

O Torque command distribution

\[
\begin{pmatrix}
\tau_x \\
\tau_y \\
\tau_z
\end{pmatrix} =
\begin{pmatrix}
t_{1x} \\
t_{1y} \\
t_{1z}
\end{pmatrix} \cdot f_1
+ \begin{pmatrix}
t_{2x} \\
t_{2y} \\
t_{2z}
\end{pmatrix} \cdot f_2
+ \begin{pmatrix}
t_{3x} \\
t_{3y} \\
t_{3z}
\end{pmatrix} \cdot f_3
+ \begin{pmatrix}
t_{4x} \\
t_{4y} \\
t_{4z}
\end{pmatrix} \cdot f_4
\]

\[
\begin{pmatrix}
f_1 \\
f_2 \\
f_3 \\
f_4
\end{pmatrix} = A^+ \begin{pmatrix}
\tau_x \\
\tau_y \\
\tau_z
\end{pmatrix}
\]

\[A^+ = A^T (AA^T)^{-1}\]

pseudo inverse

Implementation:
Experimental results

- Torque evaluation (stall)

- Command: moderate step torque in 3 axes
- Measured by 6-axis force sensor
Experimental results

Angular velocity control (as in video)

- Command: Step in 3 axes, Sine in mixed axes
- Measured by mouse sensor
Experimental results

Angular velocity control (transient)

- Command: Step in 3 axes, Sine in mixed axes
- Measured by mouse sensor
Experimental results

- Rotation control (as in video)

- Command: Step in 3 axes, Sine in mixed axes
- Measured by mouse sensor
Experimental results

O Rotation control (transient)

- Command: Step in 3 axes, Sine in mixed axes
- Measured by mouse sensor
Conclusions

- A 3-DOF Spherical actuator was proposed.
- The actuator, spherical induction motor (SIM) use four linear induction motor (LIM) inductors fitted to the spherical rotor combined with four mouse sensors for feedback control.
- The SIM could output up to 5Nm, 40N within 10ms response.
- The SIM could track angular velocity / rotational position references using PID.
Acknowledgements

A part of this work was performed in the Microdynamic Systems Laboratory, The Robotics Institute, Carnegie Mellon University, as a part of the dynamically stable mobile robots project.

It was also supported by KAKENHI (11022515).