仙台市/仙台市産業振興事業団 ロボット博士の基礎からのメカトロニクスセミナー

第13回 デジタルセンサをマイコンにつなぐ

仙台市地域連携フェロー 熊谷正朗

添付技術資料

出典:

○アバゴ・テクノロジー株式会社 (Avago Technologies)
Laser Mouse Sensor ADNS-6010 データシート AV02-1410EN December 4.2009

○インベンセンス社 (InvenSense Inc.)

MPU-6000 and MPU-6050 Product Specification Revision 3.3 Document Number: PS-MPU-6000A-00 Revision 3.3 5/16/2012

MPU-6000 and MPU-6050 Register Map and Descriptions Revision 4.0 Document Number: RM-MPU-6000A-00 Revision 4.0 03/09/2012

本文書は、WEB 上で入手できるデータシートを、セミナーにおけるデジタルセンサの実 例の解説のために、一部抜粋、引用したもので、それぞれの部分の著作権は両社にありま す。正確な情報は、両社のオリジナルのデータシートを参照ください。

ADNS-6010 Laser Mouse Sensor

Data Sheet

Description

The Avago Technologies ADNS-6010 sensor along with the ADNS-6120 or ADNS-6130-001 lens, ADNS-6230-001 clip and ADNV-6340 laser diode form a complete and compact laser mouse tracking system. It is the world's first laser-illuminated systems enabled for high performance navigation. Driven by Avago Technologies LaserStream, it can operate on many surface that prove difficult or traditional LED-based optical navigation. It's high-performance architecture is capable of sensing high-speed mouse motion -with resolution up to 2000 counts per inch, velocities up to 45 inches per second (ips) and accelerations up to 20g. This sensor is powered for the extremely high sensitive user

There are no moving parts, in the complete assembly for ADNS-6010 laser mouse system, thus it is high reliability and less maintenance for the end user. In addition, precision optical alignment is not required, facilitating high volume assembly.

Theory of Operation

The ADNS-6010 is based on **LaserStream** Technology, which measures changes in position by optically acquiring sequential images (frames) and mathematically determining the direction and magnitude of movement.

ADNS-6010 contains an Image Acquisition System (IAS), a Digital Signal Processor (DSP), and a four wire serial port. The IAS acquires microscopic surface images via the lens and illumination system. These images are processed by the DSP to determine the direction and distance of motion. The DSP calculates the Δx and Δy relative displacement values. An external microcontroller reads the Δx and Δy information from the sensor serial port. The microcontroller then translates the data into PS2 or USB signals before sending them to the host PC or game console.

Features

- High speed motion detection up to 45 ips and 20g
- New LaserStream architecture for greatly improved optical navigation technology
- Programmable frame rate over 7080 frames per second
- SmartSpeed self-adjusting frame rate for optimum performance
- Serial port burst mode for fast data transfer
- 400, 800, 1600 or 2000 cpi selectable resolution
- Single 3.3 volt power supply
- Four-wire serial port along with Power Down, and Reset pins
- Laser fault detect circuitry on-chip for Eye Safety Compliance

Applications

- Mice for game consoles and computer games
- Mice for desktop PC's, Workstations, and portable PC's
- Laser Trackballs
- Integrated input devices

Design considerations for improving ESD Performance

For improved electrostatic discharge performance, typical creepage and clearance distance are shown in the table below. Assumption: base plate construction as per the Avago Technologies supplied IGES file and ADNS-6130-001 trim lens (or ADNS-6120 round lens).

Typical Distance	Millimeters
Creepage	12.0
Clearance	2.1

The lens flange can be sealed (i.e. glued) to the base plate. Note that the lens material is polycarbonate and therefore, cyanoacrylate based adhesives or other adhesives that may damage the lens should **NOT** be used.

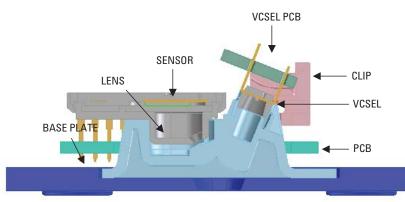


Figure 6. Cross section of PCB assembly

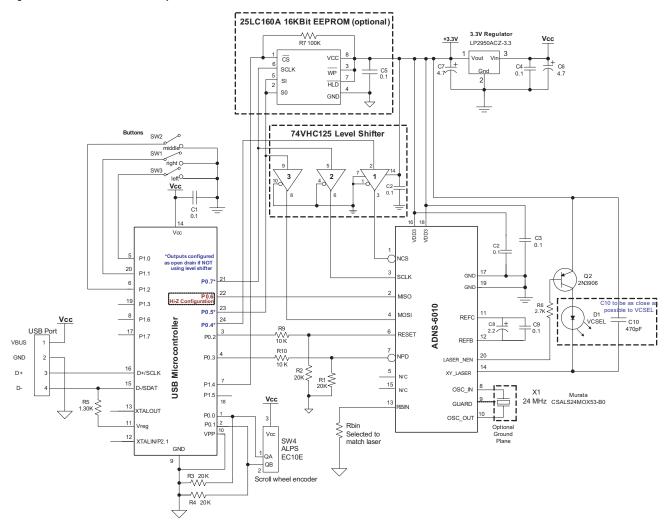


Figure 7. Schematic Diagram for 3-Button Scroll Wheel USB PS/2 Mouse

Write Operation

Write operation, defined as data going from the microcontroller to the ADNS-6010, is always initiated by the micro-controller and consists of two bytes. The first byte contains the address (seven bits) and has a "1" as its MSB to indicate data direction. The second byte contains the data. The ADNS-6010 reads MOSI on rising edges of **SCLK**.

Read Operation

A read operation, defined as data going from the ADNS-6010 to the micro-controller, is always initiated by the micro-controller and consists of two bytes. The first byte contains the address, is sent by the micro-controller over **MOSI**, and has a "0" as its MSB to indicate data direction. The second byte contains the data and is driven by the ADNS-6010 over **MISO**. The sensor outputs **MISO** bits on falling edges of **SCLK** and samples **MOSI** bits on every rising edge of **SCLK**.

NOTE: The 250 ns minimum high state of SCLK is also the minimum MISO data hold time of the ADNS-6010. Since the falling edge of SCLK is actually the start of the next read or write command, the ADNS-6010 will hold the state of data on MISO until the falling edge of SCLK.

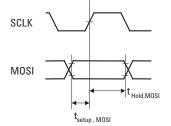
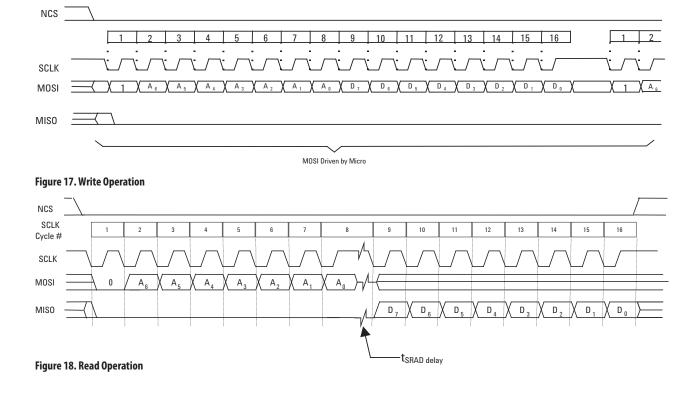



Figure 16. MOSI Setup and Hold Time

Required timing between Read and Write Commands (tsxx)

There are minimum timing requirements between read and write commands on the serial port.

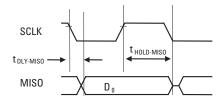


Figure 19. MISO Delay and Hold Time

If the rising edge of the SCLK for the last data bit of the second write command occurs before the 50 microsecond required delay, then the first write command may not complete correctly.

If the rising edge of SCLK for the last address bit of the read command occurs before the 50 microsecond required delay, the write command may not complete correctly. The falling edge of SCLK for the first address bit of either the read or write command must be at least 250 ns after the last SCLK rising edge of the last data bit of the previous read operation. In addition, during a read operation SCLK should be delayed after the last address data bit to ensure that the ADNS-6010 has time to prepare the requested data.

Burst Mode Operation

Burst mode is a special serial port operation mode which may be used to reduce the serial transaction time for three predefined operations: motion read and PROM download and frame capture. The speed improvement is achieved by continuous data clocking to or from multiple registers without the need to specify the register address, and by not requiring the normal delay period between data bytes.

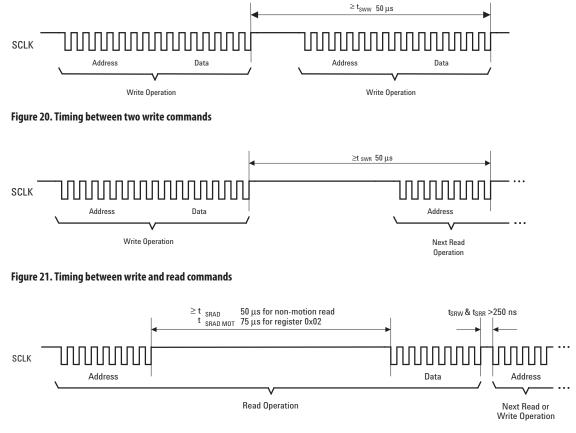


Figure 22. Timing between read and either write or subsequent read commands

Motion Read

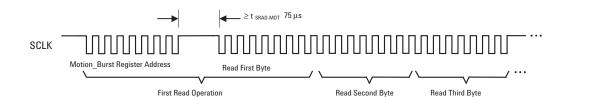
Reading the Motion_Burst register activates this mode. The ADNS-6010 will respond with the contents of the Motion, Delta_X, Delta_Y, SQUAL, Shutter_Upper, Shutter_Lower, and Maximum_Pixel registers in that order. After sending the register address, the micro-controller must wait $t_{SRAD-MOT}$ and then begin reading data. All 64 data bits can be read with no delay between bytes by driving SCLK at the normal rate. The data are latched into the output buffer after the last address bit is received. After the burst transmission is complete, the micro-controller must raise the NCS line for at least t_{BEXIT} to terminate burst mode. The serial port is not available for use until it is reset with NCS, even for a second burst transmission.

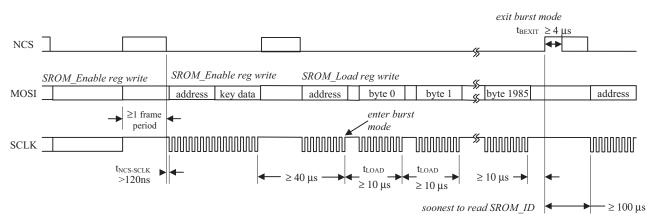
PROM Download

This function is used to load the Avago Technologiessupplied firmware file contents into the ADNS-6010. The firmware file is an ASCII text file with each 2-character byte on a single line.

The following steps activate this mode:

- 1. Perform hardware reset by toggling the RESET pin
- 2. Write 0x1D to register 0x14 (SROM_Enable register)
- 3. Wait at least 1 frame period


Figure 23. Motion burst timing.

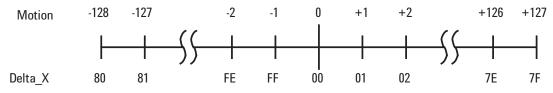

- 4. Write 0x18 to register 0x14 (SROM_Enable register)
- 5. Begin burst mode write of data file to register 0x60 (SROM_Load register)

After the first data byte is complete, the PROM or microcontroller must write subsequent bytes by presenting the data on the MOSI line and driving SCLK at the normal rate. A delay of at least t_{LOAD} must exist between data bytes as shown. After the download is complete, the micro-controller must raise the NCS line for at least t_{BEXIT} to terminate burst mode. The serial port is not available for use until it is reset with NCS, even for a second burst transmission.

Avago Technologies recommends reading the SROM_ID register to verify that the download was successful. In addition, a self-test may be executed, which performs a CRC on the SROM contents and reports the results in a register. The test is initiated by writing a particular value to the SROM_Enable register; the result is placed in the Data_Out register. See those register descriptions for more details.

Avago Technologies provides the data file for download; the file size is 1986 data bytes. The chip will ignore any additional bytes written to the SROM_Load register after the SROM file.

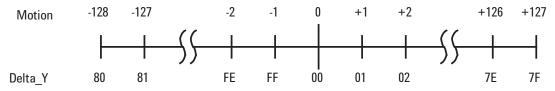
Registers


The ADNS-6010 registers are accessible via the serial port. The registers are used to read motion data and status as well as to set the device configuration.

Address	Register	Read/Write	Default Value
0x00	Product_ID	R	0x1C
0x01	Revision_ID	R	0x20
0x02	Motion	R	0x20
0x03	Delta_X	R	0x00
0x04	Delta_Y	R	0x00
0x05	SQUAL	R	0x00
0x06	Pixel_Sum	R	0x00
0x07	Maximum_Pixel	R	0x00
0x08	Reserved		
0x09	Reserved		
0x0a	Configuration_bits	R/W	0x49
0x0b	Extended_Config	R/W	0x08
0x0c	Data_Out_Lower	R	Any
0x0d	Data_Out_Upper	R	Any
0x0e	Shutter_Lower	R	0x85
0x0f	Shutter_Upper	R	0x00
0x10	Frame_Period_Lower	R	Any
0x11	Frame_Period_Upper	R	Any
0x12	Motion_Clear	W	Any
0x13	Frame_Capture	R/W	0x00
0x14	SROM_Enable	W	0x00
0x15	Reserved		
0x16	Configuration II	R/W	0x34
0x17	Reserved		
0x18	Reserved		
0x19	Frame_Period_Max_Bound Lower	R/W	0x90
0x1a	Frame_Period_Max_Bound_Upper	R/W	0x65
0x1b	Frame_Period_Min_Bound_Lower	R/W	0x7E
0x1c	Frame_Period_Min_Bound_Upper	R/W	0x0E
0x1d	Shutter_Max_Bound_Lower	R/W	0x20
0x1e	Shutter_Max_Bound_Upper	R/W	0x4E
0x1f	SROM_ID	R	Version dependent
0x20-0x2b	Reserved		
0x2c	LP_CFG0	R/W	0x7F
0x2d	LP_CFG1	R/W	0x80
0x2e-0x3c	Reserved		
0x3d	Observation	R/W	0x00
0x3e	Reserved		
0x3f	Inverse Product ID	R	0xE3
0x40	Pixel_Burst	R	0x00
0x50	Motion_Burst	R	0x00
0x60	SROM_Load	W	Any
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Shom_Loud		, (1)

Delta_X			Address:	0x03					
Access: Re	ad	Default Value: 0x00							
Bit	7	6	5 4 3 2 1 0						
Field	X ₇	X ₆	X ₅	X4	X ₃	X ₂	X ₁	X ₀	

Data Type: Eight bit 2's complement number.


USAGE: X movement is counts since last report. Absolute value is determined by resolution. Reading clears the register.

Delta_Y			Address:	0x04				
Access: Re	ad	Default Value: 0x00						
Bit	7	6	5	4	3	2	1	0
Field	Y ₇	Y ₆	Y ₅	Y ₄	Y ₃	Y ₂	Y ₁	Y ₀

Data Type: Eight bit 2's complement number.

USAGE: Y movement is counts since last report. Absolute value is determined by resolution. Reading clears the register.

Pixel_Burs	t		Address: 0	x40						
Access: Re	ad		Default Va	Default Value: 0x00						
Bit	7	6	5	4	3	2	1	0		
Field	PB ₇	PB ₆	PB ₅	PB ₄	PB ₃	PB ₂	PB ₁	PB ₀		

Data Type: Eight bit unsigned integer

USAGE: The Pixel_Burst register is used for high-speed access to all the pixel values from one and 2/3 complete frame. See the Synchronous Serial Port section for use details.

Motion_B	urst		Address:	0x50				
Access: Read Default Value: 0x00								
Bit	7	6	5	4	3	2	1	0
Field MB ₇ MB ₆ MB ₅ MB ₄ MB ₃ MB ₂ MB ₁ MB ₀							MB ₀	

Data Type: Various, depending on data

USAGE: The Motion_Burst register is used for high-speed access to the Motion, Delta_X, Delta_Y, SQUAL, Shutter_Upper, Shutter_Lower, and Maximum_Pixel registers. See the Synchronous Serial Port section for use details.

SROM_Load

Access: Write

Address: 0x 60

Default Value: N/A

Bit	7	6	5	4	3	2	1	0
Field	SL ₇	SL ₆	SL_5	SL ₄	SL ₃	SL ₂	SL ₁	SL ₀

Data Type: Eight bit unsigned integer

USAGE: The SROM_Load register is used for high-speed programming of the ADNS-6010 from an external PROM or microcontroller. See the Synchronous Serial Port section for use details.

For product information and a complete list of distributors, please go to our web site:

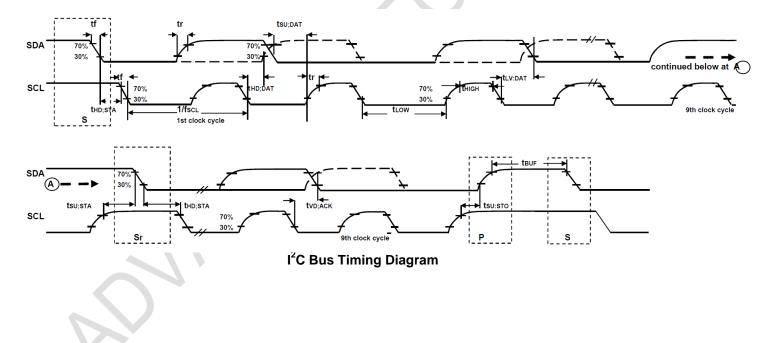
www.avagotech.com

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries. Data subject to change. Copyright © 2005-2009 Avago Technologies. All rights reserved. AV02-1410EN - December 4, 2009

InvenSense Inc. 1197 Borregas Ave, Sunnyvale, CA 94089 U.S.A. Tel: +1 (408) 988-7339 Fax: +1 (408) 988-8104 Website: www.invensense.com

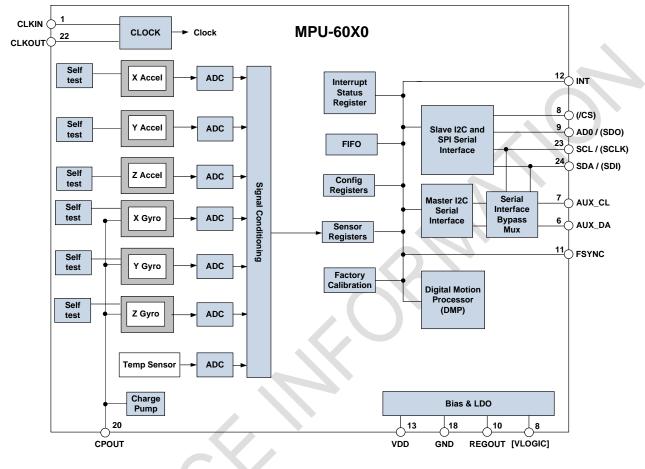
Document Number: PS-MPU-6000A-00 Revision: 3.3 Release Date: 5/16/2012

MPU-6000 and MPU-6050 Product Specification Revision 3.3



6.7 I²C Timing Characterization

Typical Operating Circuit of Section 7.2, VDD = 2.375V-3.46V, VLOGIC (MPU-6050 only) = $1.8V\pm5\%$ or VDD, $T_A = 25^{\circ}C$


Parameters	Conditions	Min	Typical	Max	Units	Notes
I ² C TIMING	I ² C FAST-MODE					
f _{SCL} , SCL Clock Frequency				400	kHz	
t _{HD.STA} , (Repeated) START Condition Hold Time		0.6			μs	
t _{LOW} , SCL Low Period		1.3			μs	
t _{HIGH} , SCL High Period		0.6			μs	
t _{SU.STA} , Repeated START Condition Setup Time		0.6			μs	
t _{HD.DAT} , SDA Data Hold Time		0			μs	
t _{SU.DAT} , SDA Data Setup Time		100			ns	
t _r , SDA and SCL Rise Time	C_b bus cap. from 10 to 400pF	20+0.1Cb		300	ns	
t _f , SDA and SCL Fall Time	C_b bus cap. from 10 to 400pF	20+0.1C _b		300	ns	
t _{SU.STO} , STOP Condition Setup Time		0.6			μs	
$t_{\mbox{\scriptsize BUF}},$ Bus Free Time Between STOP and START Condition		1.3			μs	
C _b , Capacitive Load for each Bus Line			< 400		рF	
t _{VD.DAT} , Data Valid Time				0.9	μs	
$t_{\text{VD.ACK}}$, Data Valid Acknowledge Time				0.9	μs	

Note: Timing Characteristics apply to both Primary and Auxiliary I²C Bus

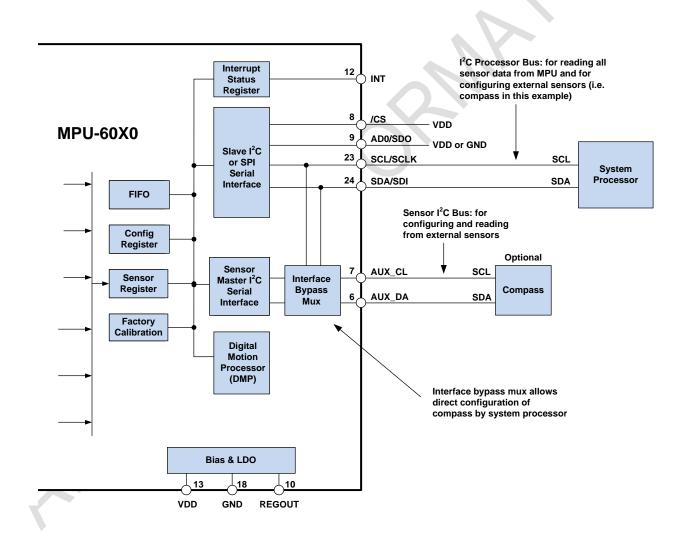
7.5 Block Diagram

Note: Pin names in round brackets () apply only to MPU-6000 Pin names in square brackets [] apply only to MPU-6050

7.6 Overview

The MPU-60X0 is comprised of the following key blocks and functions:

- Three-axis MEMS rate gyroscope sensor with 16-bit ADCs and signal conditioning
- Three-axis MEMS accelerometer sensor with 16-bit ADCs and signal conditioning
- Digital Motion Processor (DMP) engine
- Primary I²C and SPI (MPU-6000 only) serial communications interfaces
- Auxiliary I²C serial interface for 3rd party magnetometer & other sensors
- Clocking
- Sensor Data Registers
- FIFO
- Interrupts
- Digital-Output Temperature Sensor
- Gyroscope & Accelerometer Self-test
- Bias and LDO
- Charge Pump



7.13 MPU-60X0 Solution for 9-axis Sensor Fusion Using I²C Interface

In the figure below, the system processor is an I^2C master to the MPU-60X0. In addition, the MPU-60X0 is an I^2C master to the optional external compass sensor. The MPU-60X0 has limited capabilities as an I^2C Master, and depends on the system processor to manage the initial configuration of any auxiliary sensors. The MPU-60X0 has an interface bypass multiplexer, which connects the system processor I^2C bus pins 23 and 24 (SDA and SCL) directly to the auxiliary sensor I^2C bus pins 6 and 7 (AUX_DA and AUX_CL).

Once the auxiliary sensors have been configured by the system processor, the interface bypass multiplexer should be disabled so that the MPU-60X0 auxiliary I²C master can take control of the sensor I²C bus and gather data from the auxiliary sensors.

For further information regarding I²C master control, please refer to Section 10.

InvenSense Inc. 1197 Borregas Ave, Sunnyvale, CA 94089 U.S.A. Tel: +1 (408) 988-7339 Fax: +1 (408) 988-8104 Website: www.invensense.com

Document Number: RM-MPU-6000A-00 Revision: 4.0 Release Date: 03/09/2012

MPU-6000 and MPU-6050 Register Map and Descriptions Revision 4.0

3 Register Map

The register map for the MPU-60X0 is listed below.

Addr (Hex)	Addr (Dec.)	Register Name	Serial I/F	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0D	13	SELF_TEST_X	R/W		XA_TEST[4-2]				XG_TEST[4-0]	•	
0E	14	SELF_TEST_Y	R/W		YA_TEST[4-2]				YG_TEST[4-0]		
0F	15	SELF_TEST_Z	R/W		ZA_TEST[4-2]		ZG_TEST[4-0]				
10	16	SELF_TEST_A	R/W	RESE	RVED	XA_TE	ST[1-0]	YA_TE	ST[1-0]	ZA_TE	ST[1-0]
19	25	SMPLRT_DIV	R/W		-		SMPLRT	_DIV[7:0]			
1A	26	CONFIG	R/W	-	-	Ε>	T_SYNC_SET[2	::0]		DLPF_CFG[2:0]	
1B	27	GYRO_CONFIG	R/W	-	-	-	FS_SI	EL [1:0]	-	-	-
1C	28	ACCEL_CONFIG	R/W	XA_ST	YA_ST	ZA_ST	AFS_S	SEL[1:0]			
1F	31	MOT_THR	R/W				MOT_T	HR[7:0]			
23	35	FIFO_EN	R/W	TEMP _FIFO_EN	XG _FIFO_EN	YG _FIFO_EN	ZG _FIFO_EN	ACCEL _FIFO_EN	SLV2 _FIFO_EN	SLV1 _FIFO_EN	SLV0 _FIFO_EN
24	36	I2C_MST_CTRL	R/W	MULT _MST_EN	WAIT _FOR_ES	SLV_3 _FIFO_EN	I2C_MST _P_NSR		I2C_MST	_CLK[3:0]	
25	37	I2C_SLV0_ADDR	R/W	I2C_SLV0 _RW			I2C_SLV0_ADDR[6:0]				
26	38	I2C_SLV0_REG	R/W				I2C_SLV0	_REG[7:0]			
27	39	I2C_SLV0_CTRL	R/W	I2C_SLV0 _EN	I2C_SLV0 _BYTE_SW	I2C_SLV0 _REG_DIS	I2C_SLV0 _GRP		I2C_SLV	_LEN[3:0]	
28	40	I2C_SLV1_ADDR	R/W	I2C_SLV1 _RW			I2C_SLV1_ADDR[6:0]				
29	41	I2C_SLV1_REG	R/W				I2C_SLV1	_REG[7:0]			
2A	42	I2C_SLV1_CTRL	R/W	I2C_SLV1 _EN	I2C_SLV1 _BYTE_SW	I2C_SLV1 _REG_DIS	I2C_SLV1 _GRP		I2C_SLV1	_LEN[3:0]	
2B	43	I2C_SLV2_ADDR	R/W	I2C_SLV2 _RW			120	C_SLV2_ADDR[6	6:0]		
2C	44	I2C_SLV2_REG	R/W				I2C_SLV2	_REG[7:0]			
2D	45	I2C_SLV2_CTRL	R/W	I2C_SLV2 _EN	I2C_SLV2 _BYTE_SW	I2C_SLV2 _REG_DIS	I2C_SLV2 _GRP		I2C_SLV2	2_LEN[3:0]	
2E	46	I2C_SLV3_ADDR	R/W	I2C_SLV3 _RW			120	C_SLV3_ADDR[6	6:0]		
2F	47	I2C_SLV3_REG	R/W				I2C_SLV3	_REG[7:0]			
30	48	I2C_SLV3_CTRL	R/W	I2C_SLV3 _EN	I2C_SLV3 _BYTE_SW	I2C_SLV3 _REG_DIS	I2C_SLV3 _GRP		I2C_SLV3	3_LEN[3:0]	
31	49	I2C_SLV4_ADDR	R/W	I2C_SLV4 _RW			120	C_SLV4_ADDR[6	6:0]		
32	50	I2C_SLV4_REG	R/W				I2C_SLV4	_REG[7:0]			
33	51	I2C_SLV4_DO	R/W				I2C_SLV	4_DO[7:0]			
34	52	I2C_SLV4_CTRL	R/W	I2C_SLV4 _EN	I2C_SLV4 _INT_EN	I2C_SLV4 _REG_DIS	I2C MST DLYI4:0]				
35	53	I2C_SLV4_DI	R				I2C_SLV4_DI[7:0]				
36	54	I2C_MST_STATUS	R	PASS_ THROUGH	I2C_SLV4 _DONE	I2C_LOST _ARB	I2C_SLV4 _NACK	I2C_SLV3 _NACK	I2C_SLV2 _NACK	I2C_SLV1 _NACK	I2C_SLV0 _NACK
37	55	INT_PIN_CFG	R/W	INT_LEVEL	INT_OPEN	LATCH _INT_EN	INT_RD _CLEAR	FSYNC_ INT_LEVEL	FSYNC _INT_EN	I2C _BYPASS _EN	-
38	56	INT_ENABLE	R/W	-	MOT_EN	-	FIFO _OFLOW _EN	I2C_MST _INT_EN	-	-	DATA _RDY_EN

Addr (Hex)	Addr (Dec.)	Register Name	Serial I/F	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
ЗA	58	INT_STATUS	R	-	MOT_INT	-	FIFO _OFLOW _INT	I2C_MST _INT	-	-	DATA _RDY_INT			
3B	59	ACCEL_XOUT_H	R				ACCEL_X	OUT[15:8]						
3C	60	ACCEL_XOUT_L	R		ACCEL_XOUT[7:0]									
3D	61	ACCEL_YOUT_H	R		ACCEL_YOUT[15:8]									
3E	62	ACCEL_YOUT_L	R		ACCEL_YOUT[7:0]									
3F	63	ACCEL_ZOUT_H	R		ACCEL_ZOUT[15:8]									
40	64	ACCEL_ZOUT_L	R		ACCEL_ZOUT[7:0]									
41	65	TEMP_OUT_H	R				TEMP_C	OUT[15:8]						
42	66	TEMP_OUT_L	R				TEMP_0	OUT[7:0]						
43	67	GYRO_XOUT_H	R				GYRO_X	OUT[15:8]						
44	68	GYRO_XOUT_L	R				GYRO_X	OUT[7:0]						
45	69	GYRO_YOUT_H	R				GYRO_Y	OUT[15:8]						
46	70	GYRO_YOUT_L	R				GYRO_Y	OUT[7:0]						
47	71	GYRO_ZOUT_H	R		GYRO_ZOUT[15:8]									
48	72	GYRO_ZOUT_L	R		GYRO_ZOUT[7:0]									
49	73	EXT_SENS_DATA_00	R		EXT_SENS_DATA_00[7:0]									
4A	74	EXT_SENS_DATA_01	R		EXT_SENS_DATA_01[7:0]									
4B	75	EXT_SENS_DATA_02	R				EXT_SENS_	DATA_02[7:0]						
4C	76	EXT_SENS_DATA_03	R				EXT_SENS_	DATA_03[7:0]						
4D	77	EXT_SENS_DATA_04	R				EXT_SENS_	DATA_04[7:0]						
4E	78	EXT_SENS_DATA_05	R				EXT_SENS_	DATA_05[7:0]						
4F	79	EXT_SENS_DATA_06	R				EXT_SENS_	DATA_06[7:0]						
50	80	EXT_SENS_DATA_07	R				EXT_SENS_	DATA_07[7:0]						
51	81	EXT_SENS_DATA_08	R				EXT_SENS_	DATA_08[7:0]						
52	82	EXT_SENS_DATA_09	R				EXT_SENS_	DATA_09[7:0]						
53	83	EXT_SENS_DATA_10	R				EXT_SENS_	DATA_10[7:0]						
54	84	EXT_SENS_DATA_11	R				EXT_SENS_	DATA_11[7:0]						
55	85	EXT_SENS_DATA_12	R				EXT_SENS_	DATA_12[7:0]						
56	86	EXT_SENS_DATA_13	R				EXT_SENS_	DATA_13[7:0]						
57	87	EXT_SENS_DATA_14	R				EXT_SENS_	DATA_14[7:0]						
58	88	EXT_SENS_DATA_15	R				EXT_SENS_	DATA_15[7:0]						
59	89	EXT_SENS_DATA_16	R				EXT_SENS_	DATA_16[7:0]						
5A	90	EXT_SENS_DATA_17	R				EXT_SENS_	DATA_17[7:0]						
5B	91	EXT_SENS_DATA_18	R				EXT_SENS_	DATA_18[7:0]						
5C	92	EXT_SENS_DATA_19	R		EXT_SENS_DATA_19[7:0]									
5D	93	EXT_SENS_DATA_20	R				EXT_SENS_	DATA_20[7:0]						
5E	94	EXT_SENS_DATA_21	R				EXT_SENS_	DATA_21[7:0]						
5F	95	EXT_SENS_DATA_22	R				EXT_SENS_	DATA_22[7:0]						
60	96	EXT_SENS_DATA_23	R				EXT_SENS_	DATA_23[7:0]						
63	99	I2C_SLV0_DO	R/W				I2C_SLV	0_DO[7:0]						
64	100	I2C_SLV1_DO	R/W					1_DO[7:0]						

Addr (Hex)	Addr (Dec.)	Register Name	Serial I/F	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
65	101	I2C_SLV2_DO	R/W				I2C_SLV	2_DO[7:0]				
66	102	I2C_SLV3_DO	R/W				I2C_SLV	3_DO[7:0]				
67	103	I2C_MST_DELAY_CT RL	R/W	DELAY_ES _SHADOW	-	-	I2C_SLV4 _DLY_EN	I2C_SLV3 _DLY_EN	I2C_SLV2 _DLY_EN	I2C_SLV1 _DLY_EN	I2C_SLV0 _DLY_EN	
68	104	SIGNAL_PATH_RES ET	R/W	-	-	-	-	-	GYRO _RESET	ACCEL _RESET	TEMP _RESET	
69	105	MOT_DETECT_CTRL	R/W	-	-	ACCEL_ON_DELAY[1:0] -				_DELAY[1:0]		
6A	106	USER_CTRL	R/W	-	FIFO_EN	I2C_MST _EN	I2C_IF _DIS	-	FIFO _RESET	I2C_MST _RESET	SIG_COND _RESET	
6B	107	PWR_MGMT_1	R/W	DEVICE _RESET	SLEEP	CYCLE	-	TEMP_DIS		CLKSEL[2:0]		
6C	108	PWR_MGMT_2	R/W	LP_WAKE	_CTRL[1:0]	STBY_XA	STBY_YA	STBY_ZA	STBY_XG	STBY_YG	STBY_ZG	
72	114	FIFO_COUNTH	R/W				FIFO_CO	UNT[15:8]				
73	115	FIFO_COUNTL	R/W		FIFO_COUNT[7:0]							
74	116	FIFO_R_W	R/W	FIFO_DATA[7:0]								
75	117	WHO_AM_I	R	-	- WHO_AM_[[6:1] -						-	

Note: Register Names ending in _H and _L contain the high and low bytes, respectively, of an internal register value.

In the detailed register tables that follow, register names are in capital letters, while register values are in capital letters and italicized. For example, the ACCEL_XOUT_H register (Register 59) contains the 8 most significant bits, *ACCEL_XOUT*[15:8], of the 16-bit X-Axis accelerometer measurement, *ACCEL_XOUT*.

The reset value is 0x00 for all registers other than the registers below.

- Register 107: 0x40.
- Register 117: 0x68.

4.4 Register 27 – Gyroscope Configuration GYRO_CONFIG

Type: Read/Write

Register (Hex)	Register (Decimal)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1B	27	XG_ST	YG_ST	ZG_ST	FS_S	EL[1:0]	-	-	-

Description:

This register is used to trigger gyroscope self-test and configure the gyroscopes' full scale range.

Gyroscope self-test permits users to test the mechanical and electrical portions of the gyroscope. The self-test for each gyroscope axis can be activated by controlling the XG_ST , YG_ST , and ZG_ST bits of this register. Self-test for each axis may be performed independently or all at the same time.

When self-test is activated, the on-board electronics will actuate the appropriate sensor. This actuation will move the sensor's proof masses over a distance equivalent to a pre-defined Coriolis force. This proof mass displacement results in a change in the sensor output, which is reflected in the output signal. The output signal is used to observe the self-test response.

The self-test response is defined as follows:

Self-test response = Sensor output with self-test enabled - Sensor output without self-test enabled

The self-test limits for each gyroscope axis is provided in the electrical characteristics tables of the MPU-6000/MPU-6050 Product Specification document. When the value of the self-test response is within the min/max limits of the product specification, the part has passed self test. When the self-test response exceeds the min/max values specified in the document, the part is deemed to have failed self-test.

FS_SEL selects the full scale range of the gyroscope outputs according to the following table.

	FS_SEL	Full Scale Range				
	0	± 250 °/s				
	1	± 500 °/s				
	2	± 1000 °/s				
-	3	± 2000 °/s				

Bits 2 through 0 are reserved.

Parameters:

XG_ST	Setting this bit causes the X axis gyroscope to perform self test.

- YG_ST Setting this bit causes the Y axis gyroscope to perform self test.
- ZG_ST Setting this bit causes the Z axis gyroscope to perform self test.
- *FS_SEL* 2-bit unsigned value. Selects the full scale range of gyroscopes.

4.20 Registers 67 to 72 – Gyroscope Measurements GYRO_XOUT_H, GYRO_XOUT_L, GYRO_YOUT_H, GYRO_YOUT_L, GYRO_ZOUT_H, and GYRO_ZOUT_L

Type: Read Only

Register (Hex)	Register (Decimal)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
43	67		GYRO_XOUT[15:8]						
44	68		GYRO_XOUT[7:0]						
45	69		GYRO_YOUT[15:8]						
46	70		GYRO_YOUT[7:0]						
47	71		GYRO_ZOUT[15:8]						
48	72	GYRO_ZOUT[7:0]							

Description:

These registers store the most recent gyroscope measurements.

Gyroscope measurements are written to these registers at the Sample Rate as defined in Register 25.

These gyroscope measurement registers, along with the accelerometer measurement registers, temperature measurement registers, and external sensor data registers, are composed of two sets of registers: an internal register set and a user-facing read register set.

The data within the gyroscope sensors' internal register set is always updated at the Sample Rate. Meanwhile, the user-facing read register set duplicates the internal register set's data values whenever the serial interface is idle. This guarantees that a burst read of sensor registers will read measurements from the same sampling instant. Note that if burst reads are not used, the user is responsible for ensuring a set of single byte reads correspond to a single sampling instant by checking the Data Ready interrupt.

Each 16-bit gyroscope measurement has a full scale defined in *FS_SEL* (Register 27). For each full scale setting, the gyroscopes' sensitivity per LSB in *GYRO_xOUT* is shown in the table below:

FS_SEL	Full Scale Range	LSB Sensitivity			
0	± 250 °/s	131 LSB/°/s			
1	± 500 °/s	65.5 LSB/°/s			
2	± 1000 °/s	32.8 LSB/°/s			
3	± 2000 °/s	16.4 LSB/°/s			

Parameters:

GYRO_XOUT	16-bit 2's complement value.
	Stores the most recent X axis gyroscope measurement.
GYRO_YOUT	16-bit 2's complement value.
	Stores the most recent Y axis gyroscope measurement.
GYRO_ZOUT	16-bit 2's complement value.
	Stores the most recent Z axis gyroscope measurement.

4.34 Register 117 – Who Am I WHO_AM_I

Type: Read Only

Regist (Hex)	r Register (Decimal)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
75	117	-	WHO_AM_I[6:1]				-		

Description:

This register is used to verify the identity of the device. The contents of WHO_AM_I are the upper 6 bits of the MPU-60X0's 7-bit I²C address. The least significant bit of the MPU-60X0's I²C address is determined by the value of the AD0 pin. The value of the AD0 pin is not reflected in this register.

The default value of the register is 0x68.

Bits 0 and 7 are reserved. (Hard coded to 0)

Parameters:

WHO_AM_I

Contains the 6-bit I²C address of the MPU-60X0.

The Power-On-Reset value of Bit6:Bit1 is 110 100.